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Section 1: Winding number under different boundary conditions in HCL 

There are four fundamental boundaries (twig, zigzag, bearded, and armchair) in a honeycomb 

lattice (HCL), and the existence region of edge states in momentum space depends on the boundary 

condition. The winding loops predicting the existence of edge states for these boundaries in an 

unstrained HCL are displayed in Fig. S1(a). At the boundary of the corresponding one-dimensional 

Brillouin zone (1D BZ), the winding loop for the twig boundary forms a two-circle shape, while those 

for the zigzag and bearded boundaries form single circles. In contrast, the armchair boundary exhibits 

a straight-line. The nontrivial winding number (𝑤𝑤 = 1) for twig and zigzag boundaries indicates the 

presence of edge states at the boundary of the 1D BZ, whereas the trivial winding number (𝑤𝑤 = 0) for 

the bearded and armchair boundaries suggests that they cannot support edge states in the unstrained 

HCL at the boundary of the 1D BZ. 
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Fig. S1 Winding loop for different boundary conditions in HCL. (a) Winding loops in the (𝜎𝜎𝑥𝑥, 

𝜎𝜎𝑦𝑦) plane of unstained HCL corresponding to the twig boundary (a1), the zigzag boundary (a2), the 

bearder boundary (a3), and the armchair boundary (a4) at the boundary of the corresponding 1D BZ. 

The orange dot marks the origin point 𝒪𝒪. (b) has the same layout as (a) but for the winding loop of a 

strained HCL under 𝛿𝛿 = 3. 

With the introduction of uniaxial strain, only the winding loop for the twig boundary achieves a 

winding number of 2, where the origin becomes encircled by the two circles (Fig. S1(b1)). For the 

other boundaries, the applied strain either shifts the circle, as seen for the zigzag (Fig. S1(b2)), enlarges 

the circle for the bearded boundary (Fig. S1(b3)), or transforms the straight line into a circle, as seen 

for the armchair boundary (Fig. S1(b4)). Therefore, the double degeneracy of flatbands can only be 

achieved in the HCL with a twig boundary condition. 

 

Section 2: The relation between edge states and supercells in doubly degenerate flatbands. 

In an HCL, if edge states form a flatband, the number of states within the flatband should match 

the number of sites along the boundaries. Here, we demonstrate the relationship between edge states 

and boundary sites in a strained HCL with twig boundaries. For an HCL ribbon with twig boundaries 

(Fig. S2(a)), there are 𝑁𝑁𝑡𝑡 = 10 supercells (purple-shaded rectangles) and 2𝑁𝑁𝑡𝑡  = 20 sites along the 

boundaries. After the gap opens due to uniaxial strain, 40 zero-energy modes are found to be localized 

at the twig boundaries (Fig. S2(b)), clearly indicating the formation of doubly degenerate flatbands. 

Furthermore, in momentum space, the vector ℎ(𝑘𝑘)  winds twice, covering the first, second, and 



higher-order Brillouin zones (Fig. S2(c)), which further confirms the presence of doubly degenerate 

flatbands across the entire Brillouin zone. 

 

Fig. S2 Correlation Between Edge States and Boundary Sites in Strained graphene. (a) Schematic 

diagram of graphene ribbon with twig boundaries and periodic along the 𝑥𝑥-direction. The purple-

shaded rectangle marks the supercell corresponding to the twig boundary and N marks the layers of 

the ribbon structure. (b1) The zoom-in zero-energy eigenvalue distribution in (b2). (b2) The energy 

spectrum for a finite-size strained graphene with twig boundary condition. (c1) The associated 1D 

band structure under 𝛿𝛿 = 3. (c2) The corresponding schematics for the winding number calculation, 



where the red arrows point in varying directions of the vector 𝒉𝒉(𝐤𝐤). The winding number takes the 

value of 𝑤𝑤 = 2 in the red shaded region, which determines the number of edge states. 

 

Section3: Realization of four-fold degenerate flatbands in strained graphene. 

 In the main text, we demonstrate the realization of doubly degenerate topological flatbands by 

considering only the nearest-neighbor (NN) couplings. Here, we show the realization of multiple-fold 

(four-fold) degenerate flatbands by introducing long-range couplings. This is achieved by 

incorporating long-range A-B sublattice couplings (green curve in Fig. S3(a)) along with NN couplings 

𝑡𝑡𝑎𝑎 = 1 and 𝑡𝑡𝑏𝑏 = 3. These couplings do not break the chiral symmetry, thereby preserving the flatness 

of flatband edge states. In this case, the off-diagonal component of the bulk Hamiltonian ℎ(𝒌𝒌) takes 

the form: 

ℎ(𝒌𝒌) = 𝑡𝑡𝑎𝑎 + 𝑡𝑡𝑏𝑏𝑒𝑒𝑖𝑖𝒌𝒌𝐚𝐚𝟏𝟏 + 𝑡𝑡𝑎𝑎𝑒𝑒𝑖𝑖𝒌𝒌𝐚𝐚𝟐𝟐 + 𝑡𝑡𝑐𝑐𝑒𝑒2𝑖𝑖𝒌𝒌𝑎𝑎2 

When 𝑡𝑡𝑐𝑐 > 3, a four-fold degenerate flatband emerges at zero energy (red lines in Fig. S3(b)) for the 

system with a twig boundary. Meanwhile, the corresponding winding number 𝑤𝑤 = 4 (Fig. S3(c)), 

fulfilling the “bulk-boundary correspondence”. 

 

Fig. S3. Realization of four-fold degenerate flatbands. (a) Schematic diagram of the honeycomb 

lattice with twig boundaries and long-range couplings (𝑡𝑡𝑐𝑐) indicated by green curve. The black and 

orange lines indicate the nearest-neighbor couplings (b) The corresponding 1D band structure of the 

strained honeycomb lattice with long-range coupling 𝑡𝑡𝑐𝑐 = 4, where the red lines represent the region 

of edge states with four-fold degeneracy. (c) Winding loop for the twig boundary in the (𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦) 

plane at 𝑘𝑘𝑥𝑥 = 𝜋𝜋/√3𝑎𝑎. The orange dot marks the origin 𝒪𝒪.  



Section 4: Eigenmode distributions of doubly degenerate flatbands 

 For an unstrained HCL with a twig boundary condition, flatband edge states (edge states I) span 

the entire1D BZ. As discussed in the main text, tuning the coupling 𝑡𝑡𝑏𝑏  while preserving chiral 

symmetry does not destroy edge states I but instead creates a new type of edge states (edge states II). 

The eigenmodes of edge states I under different coupling ratios and at different 𝑘𝑘𝑥𝑥 are illustrated in 

Fig. S4(a). Edge states I persist at both the center and boundary of the 1D BZ before (𝛿𝛿 = 1.5 ) and 

after (𝛿𝛿 = 3) the gap opening. These states are localized at one sublattice and exhibit exponential decay 

into the bulk. In contrast, the existence region of edge states II is limited to the center of the 1D BZ 

before the gap opens (𝛿𝛿 = 1.5). The eigenmode of edge states II at 𝑘𝑘𝑥𝑥 = 0 is shown in Fig. S4(b1). 

After the gap opens, edge states II span the entire BZ, forming a flatband. The corresponding 

eigenmodes at the center and boundary of the 1D BZ are shown in Fig. S4(b2, c2). Both edge states I 

and II exhibit exponential decay into the bulk but differ in their phase distributions: edge states I show 

opposite phases at the outermost A sublattices (marked as 1 and 3) of each supercell, while edge states 

II have identical phases. 

 

Fig. S4 Eigenmode distributions of twig edge states under different coupling ratios. (a) 

Eigenmode distribution of edge states I at 𝑘𝑘𝑥𝑥 = 0 (a1) and 𝑘𝑘𝑥𝑥 = 𝜋𝜋/√3𝑎𝑎 (a2) under 𝛿𝛿 = 1.5, and at 

𝑘𝑘𝑥𝑥 = 0  (a3) and 𝑘𝑘𝑥𝑥 = 𝜋𝜋/√3𝑎𝑎  (a4) under 𝛿𝛿 = 3 . Red and blue dots represent the opposite phase 

distributions. (b1, b2, b3) have the same layout as (a1, a3, a4) but show the eigenmode distribution of 
edge states II. The eigenmode of edge states II at 𝑘𝑘𝑥𝑥 = 0 does not exist under 𝛿𝛿 = 1.5. 

 



Section 5: Experimental results of Edge states I in strained photonic graphene 

As described in the main text, the topological flatband of edge states I is always present. Using 

continuous-wave (CW) laser-writing method and same experimental parameters, we fabricate HCLs 

with the desired boundary in a nonlinear crystal (SBN). The distances between nearest-neighbor sites 

are 𝑑𝑑1 = 𝑑𝑑2 = 40.5𝜇𝜇𝜇𝜇  and 𝑑𝑑3 = 34.5𝜇𝜇𝜇𝜇  in the strained HCL corresponding to 𝛿𝛿 = 1.5 . The 

uniaxial strain direction is indicated by the gray arrow in Fig. S5(a). To demonstrate the existence of 

edge states I, probe beams matching the eigenmode distribution are generated using a spatial light 

modulator and sent into the strained HCL. The Fourier spectra of the input beams (insets of Fig. S5(b1, 

b2, c1, c2)) indicate that the probe beams targeting 𝑘𝑘𝑥𝑥 = 0 and 𝑘𝑘𝑥𝑥 = 𝜋𝜋/√3𝑎𝑎 in momentum space 

are successfully achieved. The opposite phase distribution of the input beams at the outermost two A 

sublattices (marked as 1 and 3) showcases the mode feature for edge states I. The probe beams remain 

localized at both 𝑘𝑘𝑥𝑥 = 0 and 𝑘𝑘𝑥𝑥 = 𝜋𝜋/√3𝑎𝑎 after 20 mm of propagation, with no light coupling into 

the B sublattices (indicated by the white arrows). For comparison, in-phase mixed bulk modes, where 

all the sites have the same phase distribution, are also considered. The corresponding outputs spread 

into the bulk under both 𝛿𝛿 = 1.5 (Fig. S5(b3)) and 𝛿𝛿 = 3 (Fig. S5(c3)). These results confirm that 

edge states I persist despite variations in the coupling ratio. 

 

Fig. S5 Experimental observation of edge state I in strained photonic graphene. (a) A laser-written 

strained graphene lattice under twig boundary condition along the 𝑥𝑥-direction and the strain applied 

along 𝑑𝑑3 direction at 𝛿𝛿 = 1.5. The gray arrows indicate the uniaxial strain direction. 𝐴𝐴 and 𝐵𝐵 are 

two sublattices within the unit cell. (b) Experimental outputs of the probe beam matching the 

eigenmode of edge state I at 𝑘𝑘𝑥𝑥 = 0 (b1) and 𝑘𝑘𝑥𝑥 = 𝜋𝜋/√3𝑎𝑎 (b2) under 𝛿𝛿 = 1.5. (b3) Experimental 



outputs of in-phase probe beam. The corresponding phase distributions within the dashed squares and 

Fourier spectra of the input beam are shown in the insets. The solid (dashed) lines in the Fourier spectra 

mark the center (edge) of the 1D BZ. (c) Results presented the same layout as (b) but they are for edge 

states I under 𝛿𝛿 = 3. The red (white) arrows in (b) and (c) indicate the presence (absence) of light on 

the 𝐵𝐵 sublattices. For all the experimental results, the propagation distance is 20 𝑚𝑚𝑚𝑚. 

 

Section 6: Simulation results of twig edge states for a longer propagation distance 

Due to the limited length of the crystal, we present simulation results of edge state propagation 

after 80 mm, using the same excitation conditions as in the experiment. The numerical results are 

obtained using the beam propagation method, in which the continuous Schrodinger equation is evolved 

in ‘‘time’’ (in propagation distance, 𝑧𝑧 ) in the HCL. The outputs are shown in Fig. S6. Since the 

structure cannot support a fully flatband for edge states II before the gap opens, the probe beam for 

edge states II at 𝑘𝑘𝑥𝑥 = 𝜋𝜋/√3𝑎𝑎 spreads into the bulk and occupies both A and B sublattice sites (Fig. 

S6(b2)). All other probe beams remain localized after 80 mm propagation (Fig. S6). These simulation 

results align with both experimental and theoretical findings, further confirming the double degeneracy 

of the flatband after the gap opens. 

 

 
Fig. S6 Simulation results of twig edge states after 80 mm propagation. (a) Output of the probe 

beam matching the eigenmode of edge states I at 𝑘𝑘𝑥𝑥 = 0 (a1) and 𝑘𝑘𝑥𝑥 = 𝜋𝜋/√3𝑎𝑎 (a2) under 𝛿𝛿 = 1.5. 

(a3, a4) show the corresponding outputs of edge states I under 𝛿𝛿 = 3. (b) has the same layout as (a), 

but shows the results of edge states II. 



Section 7: Simulation results of compact edge states after longer propagation 

Using the beam propagation method, we simulate the propagation of compact edge states (CESs). 

The input beam matching the eigenmodes of CES I and CES II are shown in Fig. S7(a1) and (b1). 

After 80 mm propagation, the probe beams remain intact, as illustrated in Fig. S7(a2) and (b2) for CES 

I and CES II, respectively. Due to the degeneracy of the flatbands, any linear combination of these two 

CESs can also remain compact and localized after propagation. As examples, we present the results 

for the combinations CES I + CES II and CES I − CES II. The intensity distributions of these 

combinations are shown in Fig. S7(c1) and (d1), respectively, with energy localized on the A sublattices 

and confined to a single supercell. After 80 mm propagation, the probe beams remain intact (Fig. S7(c2, 

d2)). The intensity distribution at the outermost sites can be precisely controlled by adjusting the 

overlap between CES I and CES II. For comparison, we simulate the propagation of in-phase modes, 

where the light spreads into the bulk after propagation (Fig. S7(a3-d3)). The realization of these hybrid 

compact edge states further confirms the degeneracy of two topological flatbands. 

 
Fig. S7 Simulation results of compact edge states after 80mm propagation. (a1, b1) Intensity and 

phase (inset on the right) distributions of CES I and CES II at the input. (c1, d1) Intensity and phase 

distributions of the combinations CES I + CES II and CES I − CES II at the input. (a2-d2) The output 

of the probe beam (a1-d1) after 80 𝑚𝑚𝑚𝑚  of propagation, showing the CESs remain compact and 

localized. (a3-d3) Output of the in-phase beam as input for comparison. 

 

 



Section 8: Simulation results of light confinement under different coupling ratios 

We present the simulation results of light confinement at the twig edge in photonic graphene under 

different coupling ratios (𝛿𝛿) and excitation conditions. The input beam, with a Gaussian truncation 

along the boundary, excites only a subset of the boundary sites (Fig. S8(a). The excitation of edge 

states I or II is controlled by the phase matching between the input beam and the respective edge state. 

By varying momenta (𝑘𝑘𝑥𝑥 ) of input beam with the mode distribution of edge states I, the light 

confinement ratio 𝜉𝜉(𝑘𝑘𝑥𝑥) for edge states I at different 𝑘𝑘𝑥𝑥 is calculated under different coupling ratio 

𝛿𝛿  (Fig. S8(b)). Here 𝜉𝜉(𝑘𝑘𝑥𝑥) = ��𝜙𝜙𝑘𝑘𝑥𝑥|𝑆𝑆|𝜙𝜙𝑘𝑘𝑥𝑥��
2

/��𝜙𝜙𝑘𝑘𝑥𝑥|𝜙𝜙𝑘𝑘𝑥𝑥��
2
 , where 𝜙𝜙𝑘𝑘𝑥𝑥  represents the light 

distribution at the output facet under the excitation at 𝑘𝑘𝑥𝑥, and 𝑆𝑆 is the projection operator on the four 

outer rows of the structure (marked by the green dashed rectangle in Fig. S8(a)). For 𝛿𝛿 = 1, weak 

confinement near 𝑘𝑘𝑥𝑥 = 0 arises due to the Dirac point, while strong confinement occurs away from 

𝑘𝑘𝑥𝑥 = 0, signifying the presence of edge states I. When the coupling ratio 𝛿𝛿 > 1, edge states I span the 

entire 1D Brillouin zone, accompanied by an increase in 𝜉𝜉(𝑘𝑘𝑥𝑥). Similarly, the light confinement ratio 

of edge states II is calculated using the same method. For 𝛿𝛿 = 1, the confinement ratio is relatively 

low, primarily contributed by the overlapping component from edge states I, indicating the absence of 

edge states II. At 𝛿𝛿 = 1.5, edge states II form a mini-flatband in the red-shaded region, leading to a 

high 𝜉𝜉(𝑘𝑘𝑥𝑥) in this region. When 𝛿𝛿 = 3, edge state II evolves into a complete flatband, yielding a 

high 𝜉𝜉(𝑘𝑘𝑥𝑥)  across the entire 1D BZ. These simulation results align with theoretical predictions, 

further validating the evolution and existence of the edge states. 

 

Fig. S8 The light confinement ratio under different coupling ratios. (a) Schematic of the intensity 

distribution of the input beam corresponding to edge state I or edge state II. (b) The light confinement 

ratio 𝜉𝜉(𝑘𝑘𝑥𝑥) for edge states I under different coupling ratios (𝛿𝛿). (c) same as (b), but for edge states II. 

The red-shaded region under 𝛿𝛿 = 1.5 indicates the mini-flatband of edge states II.  



Section 9: Perturbation analysis of topological flatband edge states 

The presence of edge states I and edge states II are predicted by the nontrivial winding number. 

One of the most relevant properties of these edge states is their robustness against perturbations that 

preserve chiral symmetry. To investigate the robustness, we numerically apply chiral-symmetry-

preserving perturbations to the nearest-neighbor couplings, i.e., 𝑡𝑡𝑎𝑎(𝑏𝑏)
′ = 𝑡𝑡𝑎𝑎(𝑏𝑏) + 𝜏𝜏, where 𝑡𝑡𝑎𝑎 = 1, and 

𝑡𝑡𝑏𝑏 = 1, 1.5, and 3 correspond to different coupling ratios. The strength of the random perturbations is 

set to 0.5 (𝜏𝜏 = 0.5 ∗ ((𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(1) − 0.5) ∗ 2). The results reveal that both edge state I (green line) and 

edge state II (red line) remain robust under different coupling ratios, with their energies pinned at zero, 

while the bulk modes are significantly affected (Fig. S9(a)). For the gapped case (𝛿𝛿 = 3 ), as the 

strength of random perturbations increases, the bulk modes are increasingly affected, whereas the edge 

modes remain stable and pinned at zero energy (Fig. S9(b)). 

 
Fig. S9 Perturbation analysis of topological flatband edge states. (a) Robustness of topological 

flatbands in the HCL for coupling ratio 𝛿𝛿 = 1 (a1), 𝛿𝛿 = 1.5 (a2), 𝛿𝛿 = 3 (a3), under perturbations 

(𝜏𝜏 = 0.5) applied to site couplings while preserving chiral symmetry. The green lines and red lines 

represent the existence regions of edge states I and edge states II, respectively. Black dots mark the 

degenerate points. (b) The eigenvalue distribution of gapped HCL (𝛿𝛿 = 3) under perturbations with 

increasing strengths 𝜏𝜏.  

 

Section 10: Experiment setup for photonic graphene fabrication with desired boundary 

condition 

Experimentally, we fabricate the strained graphene lattice by using a cw-laser writing method. The 

core concept involves site-to-site writing of waveguide in a nonlinear crystal using a set of precisely 

modulated, non-diffracting writing beams, which are controlled by a spatial light modulator (SLM). 



Due to the memory effect of the nonlinear crystal, the writing beams induce changes in the refractive 

index upon illumination, ultimately resulting in the formation of the designed photonic lattice structure. 

In this process, the writing Gaussian beam has a wavelength of 488 nm and an FWHM of 8 µm. The 

spacing between nearest-neighbor waveguides is modified by the SLM and adjusted based on the 

coupling ratio of the strained graphene lattice, allowing precise control over the coupling between the 

waveguides. 

As shown in Fig. S10, we present the experimental setup for generating photonic graphene 

fabrication. Given that the non-diffracting zone of the Gaussian beam is too short to cover the crystal 

length, an approach similar to femtosecond laser direct writing technology is adopted in the experiment. 

The writing beam is generated via a SLM and a 4F system after correcting the aberration. Firstly, the 

position of writing beam is fixed, and the crystal is placed on a motorized translation stage which can 

move along the propagation direction of the Gaussian beam. Due to the memory effect, a single 

waveguide is formed in the crystal. By precisely controlling the position of the Gaussian beam in the 

transverse plane via the SLM, we realize site-to-site fabrication of strained graphene lattice with a twig 

boundary and exhibiting different coupling ratios. 

 
Fig. S10 Experimental setup for photonic graphene fabrication in a nonlinear crystal. SLM, 

spatial light modulator; BS, beam splitter; L, lens; FM, Fourier mask; SBN, strontium barium niobite. 

CCD, charge coupled device. 

 

 

 



Section 11: Experimental method for the construction of the probe beams 

To generate the probe beam of edge states, its intensity and phase distributions are matched to the 

eigenmodes of edge states at various 𝑘𝑘𝑥𝑥. An SLM is used to construct the probe beams, with grayscale 

values of each pixel representing phase changes from 0 to 2𝜋𝜋, enabling precise phase modulation. 

Additionally, a grating phase mask is added to the SLM to adjust the first-order diffraction efficiency, 

allowing fine control over the beam intensity. Ultimately, the probe beams are meticulously designed 

to align with the eigenmodes of the different edge states. 

For example, in the experiment, we construct probe beams that match the eigenmodes of two 

topological twig edge states at 𝑘𝑘𝑥𝑥 = 0  and 𝑘𝑘𝑥𝑥 = 𝜋𝜋/√3𝑎𝑎 . The constructed probe beams matching 

edge states I are shown in Fig. S11. The intensity and phase of probe beams at each site are 

independently modulated, with light is exclusively distributed on the A sublattice (Fig. S11(a1, b1, c1, 

d1)). The corresponding phase distributions are shown in Fig. S11(a2, b2, c2, d2). Similarly, all probe 

beams for edge states II are constructed and shown in Fig. S12 using the same method. The identical 

phase distribution at the outermost A sublattices (marked as 1 and 3) of each supercell distinguishes 

edge state II from edge state I (Fig. S12).   

 

Fig. S11 Intensity and phase patterns of input probe beams for edge sates I. (a) Intensity 

distributions of probe beams matching the eigenmodes of edge states I at 𝑘𝑘𝑥𝑥 = 0  (a1) and 𝑘𝑘𝑥𝑥 =

𝜋𝜋/√3𝑎𝑎 (b1) under 𝛿𝛿 = 1.5, and at 𝑘𝑘𝑥𝑥 = 0 (c1) and 𝑘𝑘𝑥𝑥 = 𝜋𝜋/√3𝑎𝑎 (d1) under 𝛿𝛿 = 3. The energy is 

only distributed at A sublattices and exhibits exponentially decay into the bulk. (a2-d2) Phase 

distributions of probe beams corresponding to (a1-d1). 



 
Fig. S12 Intensity and phase patterns of input probe beams for edge sates II. (a) Intensity 

distributions of probe beams matching the eigenmodes of edge states II at 𝑘𝑘𝑥𝑥 = 0 (a1) and 𝑘𝑘𝑥𝑥 =

𝜋𝜋/√3𝑎𝑎 (b1) under 𝛿𝛿 = 1.5, and at 𝑘𝑘𝑥𝑥 = 0 (c1) and 𝑘𝑘𝑥𝑥 = 𝜋𝜋/√3𝑎𝑎 (d1) under 𝛿𝛿 = 3. The energy is 

only distributed at A sublattices and exhibits exponentially decay into the bulk. (a2-d2) Phase 

distributions of probe beams corresponding to (a1-d1). 


